YDbDr to YcCbcCrc Converter - Color Space Converter

YDbDr color space introduction

Also known as the YDbDr color space.There are 3 channels in total, Y,range from 0 to 1.Db,range from -1.333 to 1.333.Dr,range from -1.333 to 1.333.
Origin: The YDbDr color space was designed for the European SECAM color television system for color encoding in analog television broadcasting.
Primary Names: YDbDr color space, where 'Y' represents the luminance component, 'Db' and 'Dr' respectively represent the blue and red difference components.
Typically expressed as a triplet, for example: YDbDr(0.5, -0.1, 0.9) represents a color with specific luminance and chromaticity differences.
Usage Scope: Primarily used in SECAM standard color television broadcasting, which is a color video standard specific to certain countries and regions.
Additionally, compared to PAL and NTSC, SECAM uses frequency division multiplexing to separate the chrominance components, reducing cross-color interference during color image transmission.

YcCbcCrc color space introduction

Also known as the YcCbcCrc color space.There are 3 channels in total,Yc,range from 0 to 1.Cbc,range from -0.5 to 0.5.Crc,range from -0.5 to 0.5.
The YcCbcCrc color space is based on the traditional YCbCr color space, optimized for chrominance components of High Definition Television (HDTV) signals to accommodate video signals of different resolutions during transmission and processing.
YcCbcCrc uses a component representation method similar to YCbCr, usually including a luminance component Yc and two chrominance components Cbc and Crc. The difference lies in the scaling factors for Cbc and Crc, which are adjusted according to different HDTV standards. In 8-bit video signals, the range of values for Yc, Cbc, and Crc may vary depending on the standard.
This color space is primarily used in professional video production and editing, excelling in video compression and broadcast transmission, especially when dealing with high-definition video signals.
YcCbcCrc adapts to higher resolution video signals with different scaling and offset compared to standard YCbCr. This can improve the representation of chrominance signals, particularly during color conversion and color grading processes.

You might also want to convert YDbDr color space to these formats: